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Abstract

This paper develops a switching dynamics model of the sur-
face Electromyographic (sEMG) signal generated during a
condition in which the mechanical attachment of the spinal
dura to the cervical vertebra creates an unstable nonlinear
feedback coupling between the biomechanics of the spine
and the central nervous system (CNS). The sEMG signal
recorded on the paraspinal muscles during this condition re-
veals “bursts” of accrued sEMG activity interrupting an oth-
erwise quiet “background” signal. Statistical analysis of the
autocorrelation and partial correlation functions of the burst
and background parts of the signal reveals that the over-
all signal indeed switches between two modes. Both the
burst and the background modes are dynamically modeled
by ARIMA and ACE, and a switching logic, driven by the
autocorrelation and the partial correlation, is designed, re-
sulting in a switching model that matches the experimental
sEMG signal fairly well.

1 Introduction

In a book [2] that has captured the attention of spine health
professionals, the Scandinavian neurosurgeon Alf Breig in-
troduced the concept ofAdverse Mechanical Tensions in the
Central Nervous System. The tenet of this theory is the fact
that the dura mater of the spinal cord is mechanically at-
tached to the gutter of the transverse process at the 4th to
6th cervical segments, so that, say, vertebral misalignment
or postural problems can create pathological tensions on the
spinal cord, themselves impairing nerve activity. Tensions
in the spinal cord induce hyperstimulation of the propriocep-
tive fibers afferent to the spine, resulting in impaired func-
tionality of the spine at the attachment level and other effects
at other parts of the nervous system. It has been argued by
Breig that some diseases have this neuro-biomechanical ori-
gin and that relieve of these adverse tensions could alleviate
symptoms [3].

More closely related to the present paper is the fact that dural
attachments appear to create extra feedback paths from the
mechanical movement of the spine to the CNS. In the motor

reflex loop, the degree of stretch of the paraspinal muscles
is recorded by the neuromuscular spindles and transmitted
by afferent fibers to the motor neurons in the spine, back to
the muscles via the efferent fibers [10, p. 41, 139]. How-
ever, the dural attachment creates an extra feedback path
from the paraspinal musclesdirectly to the spinal neurons.
The existence of this extra feedback path has been demon-
strated by a technique referred to asNetwork Spinal Analysis
(NSA). In this technique, the practitioner locates the spinal
gateway, which is on the skin overlying or in the vicinity
of the dural-vertebral attachments, based on his (her) pro-
fessional assessment of the status of the active, passive, and
neural subsystems supporting the normal function of the ner-
vous system [9], and sensitizes the areas to the point where
a slight pressure at the spinal gateway elicits an oscillation
that takes the form of a spontaneous, involuntarily controlled
rocking motion of the spine. This produces a rather inten-
sive exercise for the spine and the back musculature, not
reproducible by any other physiotherapeutical means. This
kind of involuntary physical activity has shown therapeutic
benefits for a five years post injury quadriplegic patient [8].

A long term objective of this project is to achieve a bet-
ter understanding of the dural attachment and the nonlinear
feedback mechanisms occurring there. The shorter term ob-
jective of the present paper is to analyzes what is probably
the most fundamental aspect of the sEMG signal–namely,
that the sEMG signal consists of “bursts” of accrued sEMG
activity interrupting a quiet, background signal.

An outline of the paper follows: In Section 2, the intu-
itive burst versus background discrimination is given a rig-
orous, objective interpretation in terms of the so-called au-
tocorrelation and partial correlation functions. The (incre-
mental) burst signal is distinguished from the (incremen-
tal) background signal as being more stationary as revealed
by a faster decaying autocorrelation. After this statistical
discrimination analysis, in Section 3, the Box-Jenkins pro-
cedure for building linear stationary models for time se-
ries [5] is used to obtain models for these two different sig-
nals. In Section 4, as a follow up on ARIMA modeling, we
check heteroskedasticity, that is, time varying variance, of
the residual error. In Section 5, the Alternating Conditional
Expectation (ACE) [4] is used to evaluate nonlinear models



for each separate mode, with a significant improvement over
linear models for the burst dynamics and not much improve-
ment for the background dynamics. Finally, in Section 6, a
switching logic between the two dynamical modes based on
the mean square average of the autocorrelation and the par-
tial correlation functions is developed. It is shown that the
two linear models along with the switching logic provide a
good model of the overall signal.

2 “Bursty” versus “Quiet” Signal Discrimination

Consider the full neck signalfy(t)g of Figure 1 from an
anonymous patient, recorded by means of noninvasive elec-
trodes at a sampling frequency of4; 000 samples per second.
This patient gave the investigatorsInformed Consent to Par-
ticipate in Research under a protocol approved by theInsti-
tutional Review Board of the University of Southern Cali-
fornia.

It is obvious that this signal switches between two different
“modes.” To unravel the fundamental statistical properties
of the signal, and confirm the visually intuitive feature that
it transits between different modes, consider the plot of Fig-
ure 3, showing the sample autocorrelation and partial cor-
relation functions of the full signal. The slow decay of the
sample autocorrelation is a first indication of a lack of sta-
tionarity. Furthermore, the sample partial correlation func-
tion, shown in the same Figure 3, has value almost equal to
one at lag one, which indicates the possible presence of a
unit root. The later is confirmed by the Dickey and Fuller
test indicating that the signal indeed has a unit root. All of
these features indicate that a first order difference should ap-
plied to this signal, viz.,

x (t) = y (t)� y (t� 1)

This incremental signal is shown in Figure 2. Like the raw
signal, this incremental signal shows areas of “bursts” and
areas of quiet sEMG activity, probably in a more marked
way than the raw signal.

The statistical analysis of this incremental signal dictates
the breaking of the signal into two components: A “burst”
part running from time point1 to time point5; 000 and
the complementary “background” part running from time
point 5; 000 to time point7; 500. The sample autocorre-
lation and sample partial correlation functions of the burst
(background) signal have been computed and are shown
in the plots of Figure 4 (5). On the one hand, the auto-
correlation of the burst signal decreases very fast. On the
other hand, the autocorrelation of the background signal de-
creases very slowly.This discrepancy in the rate of de-
cay of the correlation is used as the formal–and objective–
discrimination between the burst signal and the background
signal. Quantitatively, we use the absolute summation of
the sample autocorrelation function to discriminate the burst
signal from the background signal; that is, the signal is a

burst (background) signal if the absolute summation of the
sample autocorrelation is smaller (greater) than a certain
threshold. For this particular signal, the absolute summa-
tion of the sample autocorrelation function runs from lag
1 to lag 20 and the threshold is set to2:5. The absolute
summation of sample autocorrelation and absolute summa-
tion of sample partial correlation functions have been com-
puted from the subsignalsfx (T + 1) ; : : : ; x (T + 500)g
for T = 0; 500; : : : ; 159500 and are plotted versusT in Fig-
ure 6.

A rather surprising fact is that the discrimination between
the “burst” part and the “background” part of the signal does
not quite coincide with the intuitive, naked eye analysis of
the raw sEMG signal classifying as “bursty” an area of ac-
crued sEMG activity. However, the same intuitive, naked
eye analysis applied to theincremental signal yields results
somewhat more consistent with the rigorous mathematical
analysis.

3 Linear ARIMA Modeling

From the previous section, we know that the behaviors of the
burst signal and the background signal are different. Hence
we develop two separate models–one for the burst signal and
one for the background signal. The signaly (t) from time
point 1 to time point5; 000 is considered as a prototype for
the burst signal. The signaly (t) from time point5; 000 to
time point7; 500 is considered as a prototype for the back-
ground signal.

For the burst signaly (t) ; 1 � t � 5; 000; the Smallest
CANonical (SCAN) correlation method and the Extended
Sample Autocorrelation Function (ESACF) method [1] are
used to identify the orders of the stationary or nonstation-
ary models of the burst signal as ARMA(p+ d; q) :Because
both the SCAN and ESACF methods indicate thatp+d � 1,
a unit root test should be used to determine whether this term
of degreep+ d is a unit root or an autoregressive term. The
augmented Dickey-Fuller Unit Root Test [5] indicates that
this signal should be considered as a nonstationary signal
with unit root. Similar procedure is applied to the first or-
der difference signalx (t) = (1� L) y (t), whereL denotes
the unit delay. However, the augmented Dickey-Fuller Unit
Root Test [5] fails to indicate that this signalx (t) should be
considered as a nonstationary signal with unit root. There-
fore, the models are of the ARIMA(p; 1; q) type, meaning
that the one-fold incremented signal(1�L)y(t) = x(t) can
be modeled as the output of a filterNq(L)

Dp(L)
, whereNq , Dp

are polynomials of degreeq ,p, respectively, inL, driven by
a white noise"(t). The tentative model transfer functions
Nq

Dp

for the burst signal are as follows:

ARIMA (1; 1; 1) : (1�0:7781L)
(1�0:3509L)

ARIMA (1; 1; 3) :
(1�1:363L+0:2258L2+0:1374L3)

(1�0:9019L)



Table 1: Mean square error for the prediction of the burst signal
from time point 1 to time point 5,000.

Model Mean Square Error

ARIMA (1; 1; 1) 95; 539

ARIMA (1; 1; 3) 92; 156

From the tentative models for the burst signal, it turns out
that the ARIMA(1; 1; 3) is the best model fory (t) in the
sense that its corresponds to the least mean square error. Ta-
ble 1 shows the mean square errors for the one-step predic-
tion of the models of the burst signal.

It is observed from Figure 7 that the one step prediction of
the burst signal does not compare well with the actual burst
signal. It can be seen that the actual burst signal fluctuates
and is dominated by high frequency components. Moreover,
it can be seen from Figure 8 that the residual signal does not
have normal distribution. Hence the linear predictor does
not provide the optimal prediction in the mean square error
sense. Therefore, nonlinear models have to be considered to
possibly obtain better models (see Section 5).

For the background signaly (t) ; 5; 000 � t � 7; 500; the
SCAN and ESACF methods are also used to identify the or-
ders of the tentative stationary or nonstationary models of
the burst signal as ARMA(p+ d; q). Moreover, the aug-
mented Dickey-Fuller Unit Root Test indicates that this sig-
nal should be considered as a nonstationary signal with unit
root. Going to the first order incremental signal removes the
unit root. Hence the tentative model transfer functions for
the background signal are as follows:

ARIMA (3; 1; 2) :
(1�1:491L+0:4955L2)

(1�1:823L+0:8271L2+0:02895L3)

ARIMA (2; 1; 3) :
(1�1:525L+0:5532L2

�0:02452L3)
(1�1:854L+0:8863L2)

ARIMA (5; 1; 1) :
(1�0:9903L)

(1�1:309L+0:171L2+0:04169L3+0:09065L4+0:07108L5)

ARIMA (4; 1; 2) :
(1�1:309L+0:316L2)

(1�1:63L+0:5931L2
�0:01815L3+0:09992L4)

ARIMA (3; 1; 3) :
(1�0:7363L�0:6627L2+0:4075L3)
(1�1:085L�0:5478L2+0:6887L3)

ARIMA (0; 1; 5) :
(1+0:3859L+0:3004L2+0:28L3+0:2142L4+0:1295L5)

1

From the tentative models for the background signal, it turns
out that ARIMA(5; 1; 1) is the best model fory (t) in the
sense that it has the smallest mean square error. Table2
shows the mean square error for the one-step prediction of
the background signal.

Although the diagnostic checking shown in Figure 10 re-
veals that the residual process of the background signal is
not a white noise and does not have normal distribution,
it is seen from Figure 9 that the one step prediction of the

Table 2: Mean square error for the prediction of the background
signal from time point 5,000 to time point 7,500.

Model Mean Square Error

ARIMA (3; 1; 2) 28; 014

ARIMA (2; 1; 3) 28; 007

ARIMA (5; 1; 1) 27; 636

ARIMA (4; 1; 2) 27; 658

ARIMA (3; 1; 3) 28; 149

ARIMA (0; 1; 5) 30; 348

Table 3: Mean square error for the ARIMA prediction from time
point 7,501 to time point 160,000.

Model Mean Square Error

Burst Model 87; 448

Background Model 44; 573

Switching Model 37; 078

background signal shows a reasonably good fitting with the
actual background signal (small mean square error). There-
fore, we decided to use this model to be the model for the
background signal.

Although the log transformation is often used to convert
time series that are nonstationary with respect to the innova-
tion variance into stationary time series, the log transforma-
tion is not significantly improving the models for the burst
and background signals.

4 Presence of Heteroskedasticity

Heteroskedasticity is the phenomenon that the residual er-
ror �(t) of the model has time-varying conditional variance,
that is,E(�2(t)jt� 1) depends on the timet. Recall that un-
der the condition that the best model has been obtained, the
residual error�(t) should be uncorrelated. However,� 2(t)
could be a correlated sequence and the heteroskedasticity
test precisely checks whether the observed squared residual
sequence is correlated enough, in which case the sequence
is said to have ARCH (Auto Regressive Conditional Het-
eroskedasticity) effect.

For burst mode, the hypothesis of correlation of the residual
error is rejected (H(�(t) correlated) = 0) and the hypothesis
of correlation of the residual squared sequence is accepted
(H(�2(t) correlated) = 1). Hence the burst part has ARCH.
For the background mode, both hypotheses of correlation of
the sequence and the squared sequence are accepted. While
we might be tempted to assert existence of ARCH effect
in the background mode, it should be pointed out that the
primary condition of lack of correlation of the residual se-
quence�(t) does not hold, so that the observed correlation
of �2(t) might in fact be coming from the correlation of�(t).
As such the ARCH effect in the background signal has not
been positively established.



5 Nonlinear ACE Modeling

The residues of the ARIMA models for the burst and back-
ground signals do not have normal distribution. Hence the
optimal predictors are not the linear predictors. This pro-
vides the clue that nonlinear models should be considered as
possible candidates for the optimal predictors. However, the
actual signal does not indicate what the nonlinear candidate
models could be. The Alternating Conditional Expectation
(ACE) is an appropriate modeling technique in the sense that
the ACE method is nonparametric and the ACE algorithm
converges to the optimal predictor [4]. The canonical cor-
relation technique is used to estimate the order of the ACE
models. For example, the first three canonical correlation
coefficients of the incremental burst signal are found to be

�1 = 0:6891; �2 = 0:3003; �3 = 0:1389; :::

and the coefficients decay rapidly thereafter. Hence it is rea-
sonable to keep only the first two coefficients, from which it
transpires that the order of the incremental burst process is
2. Therefore, the ACE model of the burst signal appears to
be

x(t) = �(x(t � 1); x(t� 2))

with a similar conclusion holding for the background signal.
The mean square errors for the burst and background one
step ACE predictors are29; 997 and5; 349:8, respectively,
on the training set of the ACE models. These results com-
pare well with those of ARIMA. The problem is that the
ability of the ACE model to predict the signal outside the
training set rapidly deteriorates, as shown in Table 4.

6 Switching Dynamics

From the mathematical models of the burst signal and back-
ground signal, the whole signal can be modeled as the sig-
nal obtained from switching between the burst model and
the background model. The criterion to select which model
has to be used at a particular timet is based on the absolute
summation of the sample autocorrelations computed from
the incremental signalfx (t� 1) ; : : : ; x (t� 500)g : If the
absolute summation of the sample autocorrelation is smaller
than the threshold, we select the burst model. On the other
hand, if the absolute summation of the sample autocorrela-
tions is larger than the threshold, we select the background
model. Comparison between the actual signal, the burst
ARIMA prediction, the background ARIMA prediction, and
the switching ARIMA prediction are shown in Figures 11
and 12. The mean square error for these prediction models
computed from time point7; 501 to time point160; 000 are
shown in Table3:

Comparison between the actual signal, the burst ACE pre-
diction, the background ACE prediction, and the switching
ACE prediction are shown in Figures 13 and 14. The mean
square errors for these prediction models computed from

Table 4: Mean square error for the ACE prediction from time
point 7,501 to time point 160,000.

Model Mean Square Error

Burst Model 86; 120

Background Model 45; 107

Switching Model 64; 993

time point7; 501 to time point160; 000 are shown in Table
4: These results show that the switching ARIMA model pro-
vides better prediction for the actual signal than the switch-
ing ACE model. The reason for this is that ACE appears to
be very sensitive to the training data it was constructed from,
whereas ARIMA does not appear to suffer that defect.

7 Conclusion

The main conclusion is that the sEMG signal of NSA reveals
a new class of complex nonlinear dynamic behavior in the
sense that the difference between bursting and background
signals is a matter of difference in dynamical behavior, much
more than just a difference of amplitude or variance of the
signal.

Switching among rhythms, e.g., gamma/delta, has recently
received considerable attention form neurodynamicists [7,
6]. Simple 4 neurons models have indeed been able to re-
produce this kind of behavior. However, a difference is that
the gamma/delta transition is accompanied by a definite fre-
quency shift, while, here, FFT analysis of the background to
burst transition does not reveal a marked frequency shift, but
the onset of an oscillation at a specific frequency higher than
the peak of the background. The specificity of this switching
is possibly related to the unique nature of the dural attach-
ment feedback that generates it. On a slightly different tone,
the “bursty” activity of the thalamus consisting of trains of
spikes interrupted by periods of inactivity also bears some
resemblance with the phenomena observed here.
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Figure 1: The full neck sEMG signal.
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Figure 2: The incremental neck sEMG signal.
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 Figure 1 Signal X1 at time 1 to 160000
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Figure 3: Autocorrelation and partial correlation of the full raw
neck signal.
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 Figure 2 Signal DX1 at time 1 to 5000
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Figure 4: Autocorrelation and partial correlation of the incremen-
tal “burst” part of the neck signal.
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 Figure 3 Signal DX1 at time 5000 to 7500
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Figure 5: Autocorrelation and partial correlation of the incremen-
tal “background” part of the neck signal.
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 Figure 4 Absolute summation of Autocorrelation and Partail autocorrelation functions
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Figure 6: Plots of absolute summations of autocorrelation and
partial correlation functions of the full neck signal ver-
susT .
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Figure 5 Comparision between the actual data and the one step prediction 
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Figure 7: Fitting between the “burst” signal and the one step
ARIMA predictor.

−1000 −500 0 500 1000

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

Data

P
ro

ba
bi

lit
y

Figure 6 Normal Probability Plot for the residue of the Burst model prediction

Figure 8: Test of Gaussian property of residual fitting error of
“burst” signal.
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Figure 7 Comparision between the actual data and the one step prediction 
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Figure 9: Fitting between the “background” signal and the one
step ARIMA predictor.
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Figure 8 Normal Probability Plot for the residue of the Background model prediction

Figure 10: Test of Gaussian property of residual fitting error of
“background” signal.
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Figure 9 Comparision between the actual data and the one step prediction 
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Figure 11: Comparison between actual (low frequency) signal
and one step ARIMA predictors.
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Figure 10 Comparision between the actual data and the one step prediction 
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Figure 12: Comparison between actual (high frequency) signal
and one step ARIMA predictors.
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Figure 11 Comparision between the actual data and ACE prediction 
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Figure 13: Comparison between actual (low frequency) signal
and one step ACE predictors.
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Figure 12 Comparision between the actual data and ACE prediction 
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Figure 14: Comparison between actual (high frequency) signal
and one step ACE predictors.


